
JOURNAL OF SOFTWAREMAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
Published online 1 October 2007 inWiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr.353

Research

An MDA-based approach for
database re-engineering

Macario Polo∗,†, Ignacio Garcı́a-Rodrı́guez andMario Piattini

Escuela Superior de Informática, Universidad de Castilla-La Mancha, Paseo de
la Universidad, 4, 13071 Ciudad Real, Spain

SUMMARY

This article presents the technical and functional descriptions of a tool specifically designed for database
re-engineering. As is well known, re-engineering is the process of (1) applying reverse engineering to a
software product to obtain higher-level specifications and (2) using these specifications as the starting
point for the development of a new version of the system. Thus, the complete process can be seen as a
sequence of transformation functions that operate on the different sets involved in the whole process. The
starting point of the re-engineering process is the physical schema of the database which is translated into a
vendor-independent metamodel (the logical schema) and then translated into a class diagram representing
a possible conceptual schema of the database. This diagram is then taken as the starting point for the
code generation process, which produces an executable application for four possible different platforms.
Copyright © 2007 John Wiley & Sons, Ltd.

Received 25 January 2007; Revised 27 April 2007; Accepted 11 July 2007

KEY WORDS: code generation; re-engineering; reverse engineering; model-driven reengineering

1. INTRODUCTION

In 1990, Chikofsky and Cross [1] defined some key concepts in software maintenance, such as
re-engineering, restructuring, reverse engineering and forward engineering. For these authors, re-
engineering is the ‘examination and alteration of a subject system to reconstitute it in a new form

∗Correspondence to: Macario Polo, Escuela Superior de Informática, Universidad de Castilla-La Mancha, Paseo de la
Universidad, 4, 13071 Ciudad Real, Spain.
†E-mail: macario.polo@uclm.es

Contract/grant sponsor: Junta de Comunidades de Castilla-La Mancha; contract/grant number: PBI-05-058
Contract/grant sponsor: Ministerio de Industria, Turismo y Comercio; contract/grant number: FIT-340000-2005-161
Contract/grant sponsor: Ministerio de Educación y Ciencia; contract/grant number: TIN2006-15175-C05-05

Copyright q 2007 John Wiley & Sons, Ltd.



384 M. POLO, I. GARCÍA-RODRÍGUEZ AND M. PIATTINI

and the subsequent implementation of the new form [. . . ]. It generally includes some form of reverse
engineering (to achieve a more abstract description) followed by some form of forward engineering
or restructuring’. In the same reference, restructuring is defined as ‘the transformation from one
representation level to another at the same relative abstraction level’. Finally, these authors state
that the term forward engineering is the ‘traditional process of moving from high-level abstractions
[. . . ] to the physical implementation of a system’. The adjective ‘forward’ is needed in this context
to ‘distinguish this process from reverse engineering’.
In many cases the source and target platforms of the re-engineered system coincide, but in other

situations re-engineering is used to produce versions of the original system adapted to new environ-
ments and paradigms, such as the web, object orientation, distributed computation, component-based
software, etc. In the same way, re-engineering is sometimes used for migrating a subset of the source
system to a new paradigm, such as the exposition of a couple of the system functionalities as web
services.
In the reverse-engineering step, the source code is the main starting point, although it can start

from many other elements, such as traces from program executions [2,3], data files [1] or artifacts
produced in intermediate stages of software development [4]. When reverse engineering starts
from the source code, the typical extracted target domain is one or more class models. Relational
databases are also a common source of reverse engineering [5–13]. Most of the works in this line
are concerned with the extraction of the conceptual schema of the database; thus, the target product
of the reverse engineering is often an entity-relationship (ER) or extended entity-relationship (EER)
diagram.
An ER or EER diagram is useful when the final software product will be a new version of the

database (for the same or a different database manager). However, as databases are usually managed
by external programs, obtaining the conceptual schema in another format (such as a UML class
diagram) would help the construction of both the new version of the database and the program or
set of programs in charge of managing it.
When a new management information system is being built using the object-oriented paradigm,

the class model corresponding to the domain/business tier of the application is often used as the
conceptual schema for constructing the database (in most cases, a relational database [14]), thus
bringing the world of objects to the world of tables. In general, there are at least three ways
to translate a set of classes into a set of tables [15]: (1) obtaining a table from each class in
the diagram, translating associations, aggregations and inheritance relationships into foreign key
constraints (this is known as the ‘one class, one table’ transformation pattern); (2) building, a table
for each inheritance path in the class model (‘one inheritance path, one table’); (3) translating,
a whole inheritance tree into a single table (‘one inheritance tree, one table’). Each possibility
has some advantages and drawbacks; thus, it is common to apply different combinations of these
methods to the same class diagram.
In a three-layer system, the domain class diagram is also the basis for the creation of the rest

of the layers in a multilayer application, such as the presentation or the persistence layer. The
presentation layer contains the windows, forms and screens that the user uses to interact with the
application: the presentation layer receives messages from the user and sends them to the adequate
class in the business layer, which may require executing some operation with the database via the
classes in the persistence layer. Obviously, other layers or sublayers may be required depending on
the type of application.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



AN MDA-BASED APPROACH FOR DATABASE RE-ENGINEERING 385

This article presents a method and a tool (called Relational Web) that integrates a complete process
of re-engineering, including the reverse-engineering, restructuring and forward-engineering stages.
The starting point is a relational database, whose physical schema is reverse engineered into a
class diagram representing its conceptual schema (following the ‘one class, one table’ pattern). In
restructuring, the class diagram is manipulated by the user and then passed as input to an automated
code generation process, which builds a multilayer system using different programming languages
and platforms. Moreover, the tool also includes the possibility of migrating the database from one
database manager to another. The architectural design of the tool makes it possible to add new code
generators for other programming languages easily.
The paper is organized as follows: Section 2 discusses some related works. Section 3 presents

the re-engineering method and the tool implemented, describing each step in a different subsection.
Section 4 analyses the correspondence of the proposed re-engineering process with the model-
driven architecture (MDA). Section 5 describes some case studies where the tool has been applied.
Finally, conclusions and future lines of work are presented in Section 6.

2. RELATED WORK

Reverse engineering of databases has been widely studied as an essential part of re-engineering,
probably because databases save all the relevant information from companies and are one of the
business elements most susceptible to becoming out-of-date and degraded due to maintenance tasks
which, in turn, have a strong influence on the programs in charge of managing them.
Until a few years ago, most research related to database re-engineering dealt with the reverse-

engineering stage. In 1996, Hainaut et al. [8] described the main steps of database reverse engineer-
ing as the opposite process of its construction (Figure 1): if the forward engineering of a database
requires Conceptual Design, Logical Design, Physical Design and View Design, its reverse en-
gineering needs Data Structure Extraction and Data Structure Conceptualization. Data Structure
Extraction produces a complete description of the data structures according to the model of the
DMS, whereas Data Structure Conceptualization ‘tries to make the semantics of the logical schema
explicit by recovering the intention of the optimized DMS data structures’. According to Hainaut
et al., Data Structure Extraction ‘appears as the inverse of the Physical Design forward process’,
whereas Data Structure Conceptualization is ‘to a large extent the reverse of the Logical Design
forward process’.

2.1. Traditional approaches for database reverse engineering

Taking the Hainaut et al.work as a suitable description for the database reverse-engineering process,
several authors have made concrete proposals to recover conceptual schemas from databases. Some
relevant works are the following:

1. Andersson [6] proposes a method to recover ERC+ specifications (an extension of the ER
model) from relational databases using rudimentary information that is expected to be found
in the legacy database (names of tables and fields, indexes and view definitions). These
data are looked for in the data manipulation statements extracted from the application code,
written in a 4GL environment.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



386 M. POLO, I. GARCÍA-RODRÍGUEZ AND M. PIATTINI

Database

Optimized
relational 
schema

Conceptual
schema

Data structure extraction

Data structure
conceptualization

Figure 1. Database reverse engineering (adapted from Hainaut et al. [8]).

2. Shoval and Shreiber [16] obtain a binary relationship diagram from a relational database. The
data input step is not automated (the information on the relational schema must be introduced
manually) and the binary relationship model is not used for conceptual data modelling.

3 Chiang et al. [7] describe an algorithm to obtain an EER schema from a relational database.
It uses some schema information (relation names, attribute names and primary keys), the
actual data saved in the database and questions to the user to obtain the schema, including
inclusion dependencies. These are inferred by the algorithm but finally determined by the
user.

4. In the context of Federated Database Systems, Castellanos [17] obtains object-oriented spec-
ifications of the relational databases forming the system, using the data on the database and
the corresponding data dictionary. The obtained model is represented in BLOOM, an object-
oriented specification language that captures different types of generalization and aggregation
relationships. The model is used to increase knowledge about the individual databases of the
system.

5. Tari et al. [18] also apply a set of algorithms to several federated databases to obtain a single
set of C++ source files representing the classes that make up the object-oriented conceptual
schema.

6. Alhajj and Polat [5] present an approach to transform a relational database into an object-
oriented database, based on the data dictionary and on expert knowledge. The authors also
deal with the migration of data to the new environment.

7. On the basis of only the data dictionary, Soon et al. [19] propose a detailed set of steps to
obtain an object-oriented database conceptual schema from a relational one.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



AN MDA-BASED APPROACH FOR DATABASE RE-ENGINEERING 387

8. Premerlani and Blaha [20] present some conclusions about their work on several case studies.
The authors use three sources of information (the schema, observed patterns of data and the
semantic understanding of the application) to obtain an OMT representation of the database.
They summarize the process in five steps, beginning with the consideration of a class for
each table and finishing with some transformations to improve time and space performance.

9. Pérez et al. [21] produce an OASIS object-oriented conceptual schema from the data dictio-
nary of a relational database. The work deals with the migration of the data from an old to
a new relational database, although they obtain an intermediate object-oriented schema.

10. Yeh and Li [22] obtain the ER diagram from a legacy dBase III system. They import the old
data files into tables of an SQL Server database and base the reverse engineer on the manual
analysis of the data and the table structure.

Thus, strategies for database reverse engineering can be classified in several ways. Table I gives
the aforementioned references, classified according to (1) the procedure for the data input and (2)
the source and target systems.
Most of the works analysed here share the principal goal of obtaining a new model representing

the original database (sometimes in object-oriented notation, other times in ER diagrams, and even
new relational databases), and at that point they finish the process.
An interesting approach is to take the conceptual diagram obtained as a UML model, and to use

it as the starting point for a new automated forward-engineering stage, making it possible to obtain
not only a conceptual diagram but also a semi-automated construction of a set of applications to

Table I. Classification of some works on database reverse engineering.

Reference Source system Data input Target system
Alhajj and Polat [5], 2001 Relational database Data dictionary, expert

knowledge
Object-oriented database

Andersson [6], 1994 Relational database Analysis of DML
embedded in program
code

ERC+

Castellanos [17], 1993 Federated relational
databases

Data dictionary, data BLOOM specification

Chiang et al. [7], 1994 Relational database Data dictionary, data,
expert knowledge

Extended ER diagram

Pérez et al. [21], 2002 Relational database Data dictionary Relational database
(intermediate OASIS
schema)

Premerlani and Blaha [20],
1994

Relational database Data dictionary, data,
expert knowledge

OMT class diagram

Shoval and Shreiber [16],
1993

Relational database Manual Binary relationship
diagram

Soon et al. [19], 2004 Relational database Non-specified Object-oriented
conceptual schema
(textual)

Tari et al. [18], 1997 Federated relational
databases

Data dictionary C + + source files

Yeh and Li [22], 2005 dBase III files Importation to SQL
Server

ER diagram

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



388 M. POLO, I. GARCÍA-RODRÍGUEZ AND M. PIATTINI

Relational
database

Conceptual
schema

Reverse
engineering

Analyzed approaches

Forward
engineering

+
restructuring

Relational
database

Application

Our extension

Figure 2. Roadmap of the re-engineering process described in this article.

manage the database, as well as, most likely, a new version of the database. This article explores
how the traditional approaches analysed above can be extended by adding a further stage of forward
engineering (Figure 2).

2.2. Object–relational mapping

The difference between the object and the relational worlds has led to the development of many
techniques and tools to map classes with tables. Larman [23] offers an excellent overview of
persistence frameworks to preserve these mappings. This author lists some of the key aspects
covered by a persistence framework:

1. Preserving the mapping between tables and classes.
2. Object identity.
3. Control of the materialization and unmaterialization of objects.
4. Use of object caches.
5. Control of transactions.
6. Lazy materialization.

On a practical level, there are several common implementations of object–relational mapping
techniques.
In order to present the characteristics of the object–relational mappings, the example in Figure 3

is used. This shows the possible structure of the database used by an editorial to manage the
submissions of articles to its journals. The database saves information about authors, reviewers,
articles, journals and reports.
Torque and Object–relational bridge are two open-source projects of the Apache Software Foun-

dation (http://www.apache.org). From an XML representation of the database schema, they gen-
erate a set of classes with persistence capabilities. In general, these projects follow the ‘one class,
one table pattern’ [24], although the generated structure of classes is prepared to preserve the easy
maintenance of classes.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



AN MDA-BASED APPROACH FOR DATABASE RE-ENGINEERING 389

Figure 3. A sample database.

Figure 4. Some reverse-engineered classes using Torque.

Figure 4 shows some of the classes obtained by applying Torque to the database in Figure 3 (the
structure for Object–Relational Bridge is very similar). For each table X , the following classes are
built: BaseXPeer, XPeer, BaseX and X . BaseX (BaseJournal, for example) is an abstract class that
keeps the mapping between the class and the table (it defines a field for each column in the database,
methods to set and to get values from the fields and some auxiliary methods); thus, the programmer
must use its specialization, X (Journal, for example), to manipulate records from the table, adding
business methods, etc. Peer classes (BaseJournalPeer and JournalPeer) are implementations of the
‘Pure Fabrication’ pattern of Larman [23]. BaseJournalPeer contains static implementations of the
persistence methods for the corresponding table; thus, non-peer instances represent records and
they delegate the execution of their corresponding persistence instructions to the associated peer
classes.
Sentences in Figure 5 would materialize an instance corresponding to the ‘Journal of Software

Maintenance’ from the database and would change the record value. Note that the construction of

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



390 M. POLO, I. GARCÍA-RODRÍGUEZ AND M. PIATTINI

Figure 5. Code to materialize an instance from a record.

the instance is made through the JournalPeer class, but records are recovered as Journal instances.
In the same way, the call to the save method shown in the last line finishes in a call to the doUpdate
method of JournalPeer.
Hibernate (http://www.hibernate.org/) is also an open-source project. It supports different map-

pings between tables and classes and lazy materialization (objects are not created until they are
required). Hibernate makes it possible to write queries in SQL and HQL (a specific query language).
It is integrated with J2EE and can be used as persistence manager in EJB 3 environments.
With RCRUD Polo et al. [25] propose a reflective persistence framework, which supports differ-

ent mapping techniques (one class, one table; one inheritance tree, one table; one inheritance path,
one table). The idea in this work is to take advantage of the reflective characteristics of several pro-
gramming languages (Java or those in Microsoft .NET) to generate at runtime the set of persistence
methods of classes. The authors propose using an abstract class, RCRUD (‘Reflective CRUD’),
which includes a set of concrete operations. These access the database structure in runtime and
generate the corresponding persistence instruction. Thus, when an instance must be inserted in the
database, it calls its corresponding insertmethod, which is completely defined in RCRUD. RCRUD
is the superclass of the whole hierarchy of persistent classes. Subclasses of RCRUD do not include
the implementation of persistence instructions, but only of business methods, which must be added
manually by the programmer.
In general, all the reviewed approaches tend to leave persistence methods in a distinguished set of

classes, whereas the programmer must add business methods in a separated set. This type of design
increases the cohesion of classes and obtains a good level of coupling, which are two desirable
characteristics of object-oriented systems [23].
Several commercial and open-source CASE tools that reverse engineer relational databases into

classes according to these approaches exist. In this respect, research in the field of the reverse
engineering of relational databases has reached maturity.

2.3. Model transformation

According to OMG [26], MDA is ‘an approach to system development which increases the power
of models in that work [system development] because it provides a means for using models to
direct the course of understanding, design, construction, deployment, operation, maintenance and
modification’.
The ideal goal of MDA is the construction of software using only graphical representations of

the system. For this, MDA suggests the use of three viewpoints to represent software systems
(computation-independent, platform-independent and platform-specific viewpoints), establishing
that the development of software systems can be seen as a series of successive transformations

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



AN MDA-BASED APPROACH FOR DATABASE RE-ENGINEERING 391

from one viewpoint to another (i.e., from one viewpoint model to another). Different types of
metamodels can be mapped to each viewpoint. It is possible, then, to have the relational (for repre-
senting relational databases) or the object-oriented metamodel and to define a set of transformation
rules to transform one metamodel instance into another. For example, an instance of the object-
oriented metamodel can be transformed into an instance of the relational one, or vice versa. Thus,
a metamodel is simply a model of models [27].
In model-driven re-engineering, the MDA approach is applied to the re-engineering of legacy

systems. Here, one or more models (actually, instances of metamodels) are obtained from the legacy
system and are translated via a set of transformations into new models, each time closer to the target
system.
Following the model-driven approaches, MOMENT [28] is a framework for ‘MOdel manage-

MENT’. In MOMENT, metamodels are specified as sets of elements and transformations are
specified by means of algebra in the Maude rewriting term system [29]. A MOMENT metamodel
is an abstract representation for some kind of metadata. MOMENT is an implementation of the
technique in Pérez et al. [21], which was analysed in Section 2.1.
There are other languages closely related to models, metamodels and transformations, such as

ATL. ATL (ATLAS Transformation Language) is a metamodel-based transformation DSL (Domain-
specific Language) intended to be compliant with the OMG/QVT recommendation and designed
to express model transformation as required with any MDA approach [30,31].
In general, current research tends to distinguish between two different strategies in model trans-

formation:

(a) Transformations based on rewriting rules (such as MOMENT), which require user interven-
tion to guide the translation. These strategies make it possible to describe the final system
before or during the transformation, although this task requires coding the complete set of
rewriting rules, which can be tedious and prone to error.

(b) Transformations based on marks and templates, which completely automate the translation
process. The main drawback of these strategies is that modifications cannot be done until the
final system has been obtained.

The technique presented in this article, and its corresponding tool, is an intermediate proposal
between both approaches: the main goal is the generation of an object-oriented application from a
relational database. For this, the database structure is extracted and represented using a relational
metamodel, which is later transformed into a class diagram. This can be directly used to generate
the final application. However, before generating the final application, the software engineer can
modify the default behaviour of classes with state machines, which implies the modification of the
finally obtained system.

3. DESCRIPTION OF THE RE-ENGINEERING PROCESS

This section describes the complete re-engineering process implemented in the tool, including
algorithms and metamodels. The first subsection provides a general overview of the main step of
the process and justifies why it is considered a re-engineering process. Each step is then explained
in detail in further subsections.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



392 M. POLO, I. GARCÍA-RODRÍGUEZ AND M. PIATTINI

Reading of the
data dictionary

Instance of the
relational

metamodel

Reverse
engineering

Instance of the
OO metamodel

DBFactory RDB2OO Software
engineer

Annotation of
classes

Annotated
instance of the
OO metamodel

Code
generator

Code
generation

Layered
application

Database

Figure 6. General view of the re-engineering process.

3.1. General description of the process

Figure 6 describes, using a UML activity diagram, a general view of the re-engineering pro-
cess which is also implemented in the tool. As seen here, four principal entities intervene in the
process: a DBFactory is in charge of reading the database data dictionary and producing an in-
stance of the relational metamodel; RDB2OO applies reverse engineering to obtain a class diagram
(i.e., an instance of the object-oriented metamodel) representing the conceptual schema corre-
sponding to the relational model; then, the Software Engineer may modify, still at a conceptual
level, the default behaviour of the classes obtained with the addition of state machines; finally, a
Code Generator (with different specializations) generates a multi-layer application for the desired
target.
At the end of the intermediate stages, the Software Engineer should check and validate the

different models obtained. As the architecture of the final application has a complete dependence

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



AN MDA-BASED APPROACH FOR DATABASE RE-ENGINEERING 393

Table II. General characteristics of the code generators.

Code generator Presentation tier Domain tier

OO2EJB JSP pages Enterprise Java Beans
OO2JSP JSP pages Standard Java classes

(these two code
generators share the
domain classes)

OO2JavaDesktop JFrames, JPanels, JDialogs
(from javax.swing)

OO2CSharpDesktop Windows Forms C# classes

on the class diagram, which in turns proceeds from the original database schema, it is central to
perform such a validation to ensure that all models are representing the same problem.
Here, the process described is a complete re-engineering process in the sense of Chikofsky and

Cross [1] mentioned in Section 1, since it includes reverse engineering (the class diagram produced
from the database corresponds to the conceptual model of the database, thus being ‘a more abstract
description’ of this), restructuring (the behaviour of the classes, obtained automatically, can be
modified at the same abstraction level) and forward engineering (the class diagram, which represents
the conceptual model, is used to generate the physical implementation of the system).
The Code generator component shown in the last swimlane of Figure 1 has four specializations,

one for each type of target platform (Table II). Thus, the OO2EJB code generator builds an EJB-
based application with JSP pages in its presentation layer; the OO2JSP and the OO2JavaDesktop
generators share the component in charge of building the domain layer of the system, although
they have different generators for the presentation layer; finally, OO2CSharpDesktop builds an
application using C# classes in the domain layer and Windows Forms in the presentation one.

3.2. Obtaining the database instance

DBFactory is the class in charge of reading the database data dictionary to get a vendor-independent
representation of the physical database (that is, to get the instance of the relational metamodel shown
in Figure 6). It is implemented as an abstract factory pattern [32], with as many specializations as
types of databases that must be processed. Today, the tool can manipulate databases implemented
in Oracle, Caché (from Intersystems), SQL Server and Access (from Microsoft), meaning that four
concrete factories exist (Figure 7).
Each concrete factory accesses the database data dictionary through the Connection object it

knows. Connection is a standard interface provided by Sun Microsystems that is implemented by
most database vendors. It includes the getMetaData operation, which returns a DatabaseMetaData
object and, from this, Relational Web accesses and extracts the information saved in the data
dictionary (Table III).
Figure 7 shows the hierarchy of factories and illustrates the case of the SQLServerFactory class,

which instantiates the connection to a SQLServerConnection object, a class provided by Microsoft
for connecting Java applications to SQL Server databases. SQLServerConnection implements all
the operations required to access the database metadata and therefore, is useful when recovering
the instance of the relational metamodel. Oracle and Caché also offer the corresponding classes;
thus, the microarchitecture for these databases is similar to that in Figure 7. The case of Microsoft

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



394 M. POLO, I. GARCÍA-RODRÍGUEZ AND M. PIATTINI

Figure 7. Factories to recover the database structure.

Table III. Some operations included in java.sql.DatabaseMetaData.

getCatalogs()
getTables(String catalog, String schemaPattern, String tableNamePattern, String[] types)
getExportedKeys(String catalog, String schema, String table)
getImportedKeys(String catalog, String schema, String table)
...

Access databases is different, since it must be used through the standard JDBC–ODBC bridge,
which does not provide results for all operations in the Connection interface. In this case, the data
dictionary must be accessed directly by reading from a set of system tables contained in the self-data
file. Thus, the existence of a separated AccessFactory for reading Microsoft Access databases is
completely justified. The three remaining factories can be grouped into a single one (as some tools
do); however, the JDBC connection string is different for each vendor and there are also differences
in the implementations given to their Connection classes and in the variety of data types provided
(which has a strong influence on further code generation steps). Due to this, the implementation of
the system in charge of reading the data dictionary as an abstract factory was chosen.
After reading the data dictionary, each DBFactory builds an instance of the relational metamodel,

which is represented in the tool as the Database class. Database represents the relevant structures
of a relational database from the point of view of this re-engineering process. Here then, Database
saves information about tables and their columns, foreign keys and stored procedures, although it
does not keep information about triggers or check constraints. Figure 8 shows the relationships of
this class with the others.
The translation from the physical to the logical schema (i.e., the instance of Database) is the

main function of getBD, an abstract operation included in the DBFactory class, which is redefined
in each specialization. Excepting in the AccessFactory, the implementation of this operation uses

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



AN MDA-BASED APPROACH FOR DATABASE RE-ENGINEERING 395

Figure 8. Structure of Database, which represents the relational metamodel.

Figure 9. XML fragment of a Database instance.

the DatabaseMetaData and ResultsetMetaData classes (defined in the java.sql standard package)
to read the data dictionary. Any instantiated metamodel can be saved into XML for later recovery.
Figure 9 includes a fragment of the XML representation of the database shown in Figure 3.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



396 M. POLO, I. GARCÍA-RODRÍGUEZ AND M. PIATTINI

3.3. Reverse-engineering stage

The reverse-engineering stage is carried out by the RDB2OO element shown in the second swimlane
of Figure 6. It takes an instance of the aforedescribed Database and translates it into an object-
oriented class diagram representing the possible conceptual model used during the development of
the database. Initially, the algorithm for obtaining the class model builds a class for each table in
the database (following the ‘one table, one class’ transformation pattern, one of the three choices
mentioned in Section 1, to obtain an instance of an Object-oriented metamodel corresponding to
the relational schema), adding to the class a field for each column in the corresponding table of a
compatible data type. Then, it processes the foreign key relationships in the database to represent
associations and inheritance, which may require removing fields. Let A, B be two tables related by
a foreign key from A (referenced table) to B (referencing table):

(1) If all the foreign key columns in B are also the complete primary key (that is, there is
a 1:1 relationship connecting B primary key with A primary key), then the foreign key
is translated into an inheritance relationship, where the class proceeding from A is the
superclass and the class proceeding from B is the subclass. In this case, the fields proceeding
from the foreign key columns are removed from the subclass. This translation agrees with
Premerlani and Blaha, who say that ‘in order to determine generalizations, we generated a list
of possible one-to-zero-one associations through queries involving every pair of primary keys’
[20, p. 46].

(2) If foreign key columns in B are not its primary key, then the relationship is translated into
an association, whose cardinality is determined by the cardinality of the foreign key. Once
more, Premerlani and Blaha [20] state that ‘the foreign key is usually buried on one end
of the association [. . . ]. Unique indexes can enforce multiplicity constraints, particularly for
qualified associations’. In fact:

(a) If all the foreign key columns in B constitute a unique index, then the relationship is 1:1
and will be translated into a 1:1 association. In the class corresponding to A, the fields
corresponding to the foreign key columns are removed and A receives a new field of
the B data type.

(b) Otherwise, the foreign key is translated into a B-collection field that is added to the
class corresponding to A. In B, a field of type A is added and the fields proceeding from
these columns are removed from both classes. Thus, a 1:n foreign key is translated into
two associations: 1:0..n and 1:1.

The database in Figure 3 contains eight tables and has several foreign relationships among them:

(1) Author and Reviewer are related to Person by means of their respective primary keys. Accord-
ing to the proposed algorithm, these relations will be interpreted as inheritance relationships:
Person will be translated into the root class of the hierarchy, whereas Author and Reviewer
will be subclasses.

(2) Journal is connected to Person via its EditorEmail column, which is a unique index, but not
its primary key, to guarantee that each person does not edit more than one journal. Thus,
the foreign key between Journal and Person has cardinality 1:1 in the database and will be
translated into a 1:1 association. This implies the addition of a Person field to Journal and

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



AN MDA-BASED APPROACH FOR DATABASE RE-ENGINEERING 397

Figure 10. OOS metamodel (the structure of State is presented in Section 3.4).

the removal of the EditorEmail field in the Journal class, which was added in the first step
of the algorithm.

(3) Since each journal receives many articles (foreign key between Journal and Article), a field
to keep a collection of Article instances is added to Journal; in Article, the Journal column
(a String field added in the first step) is substituted by a field of type Journal.

Figure 10 shows the metamodel used to represent OOS instances: for each class, the meta-
model saves its set of fields, constructors, methods, superclasses and states (these are presented in
Section 3.4).
When the tool is used later to generate the application, its source code can be annotated with

comments (also called ‘doclets’) which can be interpreted by the Oracle JDeveloper development
environment or by the Eclipse UML plugin. Figure 11 shows the representation made by Oracle JDe-
veloper of the domain layer of the application, obtained after having applied the reverse-engineering
algorithm and having generated the basic code (that is, with no restructuring). For reasons of space,
only partial details from three classes are shown. The following comments illustrate some issues
in Figure 11:

1. The foreign key between Person (as referenced table) and Journal (which was relating the
Person’s primary key to a unique index in Journal) is translated into a navigable 1:1 association
from Journal to Person. Moreover, the field of Journal corresponding to the EditorEmail
column in the Journal table has been removed, since this value is accessible through the
mPerson role and the getEmailFromPerson method.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



398 M. POLO, I. GARCÍA-RODRÍGUEZ AND M. PIATTINI

2. 1:n Foreign keys are translated into two associations. For example, the foreign key between
Journal and Article is translated into an association from one Journal to many instances
of Article (note that the set of articles of the journal is represented by the 1:n association,
named mArticle), and from each Article to its respective Journal. Note also that Article, which
corresponds to the referencing table in this foreign key, has no field corresponding to the Name
column (its foreign key in the database in Figure 3), since the whole object is now accessible
through the mJournal role of the 1:1 association.

3. The ArticleAuthors table is actually representing an n:m association between Article and
Author (since each article may be written by a set of authors, and each author may write
several articles). In this example, ArticleAuthors has two foreign keys pointing to the other
two tables and one additional column (IsContactAuthor). In the object-oriented system, this
is represented as an associative class, which can be refactored as shown in Figure 11 [33]. If
the table had no additional columns, then it would be replaced by two 1:n associations, one
from Author to Article and another from Article to Author, which is semantically equivalent
to one n:m association.

4. Author and Reviewer have been stated as specializations of Person, since the first two were
related to the latest via their primary keys. Author and Reviewer have removed the fields cor-
responding to their respective primary keys (Email in both cases), because they are inheriting
from Person.

5. All classes have an oldPKs field. When the instance is changed, this field saves (as strings)
the previous values of the primary key columns in order to compose the where clause of the
corresponding update SQL instruction.

6. By default, every class receives a basic set of operations: an ‘empty constructor’, with no
parameters, used to build instances of the class with all the fields assigned to default values;
a ‘materializer’ constructor, used to build instances of the class from the information saved in
the database; the insert, delete and update methods, which work with the database to insert,
delete and update instances; accessor methods (getX/setX) for each field (the signature of
the method may change depending on where the desired field actually stays, such as the
aforementioned getEmailFromPerson operation in Journal). Note that persistence operations
receive a Broker as parameter: the Broker maintains the connection to the target database and
plays the role of a Database Broker [34].

The algorithm in charge of making the translation from Database to OOS is shown in
Figure 12, where the construction of classes from tables is made in lines 3–9. Classes receive
the same names as the tables they proceed from. For fields, names are mapped to those of their
respective columns (primary keys receive the prefix mPK, the remaining fields, m), and their types
are assigned depending on the corresponding column data type. Once the initial set of classes exists,
foreign keys are processed to arrange the inheritance relationships and associations. The addition of
constructors and methods to classes is not made at this step but is postponed to the code generation
step.
Figure 13 shows the main screen of the tool after having reverse engineered the database from

Figure 3. It includes one panel for each database vendor, each connected to the corresponding
concrete factory in Figure 7. This window shows some of the database metrics proposed by Calero
et al. [35], which can be used to estimate some code metrics in the final application. In the figure,
the tool already has the instance of OOS and the user can begin the restructuring.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



AN MDA-BASED APPROACH FOR DATABASE RE-ENGINEERING 399

Figure 11. Class diagram proceeding from the database schema in Figure 3.

3.4. Restructuring

In the restructuring step, the software engineer completes class descriptions with state machines
that modify the default behaviour (CRUD, get/set operations) of instances, which is determined by
the default set of operations assigned to each class.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



400 M. POLO, I. GARCÍA-RODRÍGUEZ AND M. PIATTINI

Figure 12. Reverse-engineering algorithm.

For each domain class, the user can define one or more state machines, which will be composed
by states and transitions. Since the state of an instance depends on the values of its respective fields,
the software engineer (see Figure 6) describes every state with a Boolean expression, which will be
used to determine whether the instance is or is not in that state. Moreover, states are also annotated
with triggering events, entry and exit actions. A triggering event (merely an Event) is mapped to a
method which may cause the instance to change from a source to a target state. Events can also be
annotated with actions, preconditions and post-evaluated conditions. A Precondition is a condition
that must be fulfilled in order to trigger the execution of the Event; a Post-evaluated condition
is checked after the execution of the operation and may vary the target state. Finally, an Act ion
is an operation that is executed as a consequence of the event trigger, the input or the output of
a state.
Thus, an Event will be able to be triggered if the instance is in a state which admits the event and

the event precondition is true. Both the expression defining the state and the precondition therefore
play the role of a single precondition. Figure 14 summarizes the set of classes implementing the
State metamodel.
In order to illustrate the restructuring step, suppose that the desired behaviour for the Article class

(depicted in Figure 11) is that shown in Figure 15: initially, an article is Presented and, when it has
three reviewers assigned (note the post-evaluated conditions that use the getNumberOfReviewers
operation), passes to theUnderRevision state; inUnderRevision, it may execute the review operation,
which causes the instance to remain in the same state when the call to getNumberOfRevisions (a
precondition) is less than 2; otherwise, the instance goes to Reviewed, which is left when the accept

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



AN MDA-BASED APPROACH FOR DATABASE RE-ENGINEERING 401

Figure 13. Reverse-engineering panel of the tool.

operation is called. Finally, and depending on several post-evaluated conditions, the article goes to
one of the remaining states.
All these states, as well as the operations that have been mentioned in the previous paragraph

(getNumberOfRevisions, accept, etc.), must be adequately described in the tool.
Figure 16 shows the restructuring panel of the tool applied to the Article class. The left side lists

all the classes obtained after having reverse engineered the database (note that Article is selected).
The middle column includes the states defined for the selected class. The right side provides the
complete description of the state.
As noted above, all states must have a name and a description, which is a Boolean expression

representing when the instance is in that state. Furthermore, each state may contain entry and exit
actions, triggering events and transitions.
In Figure 16, the software engineer is describing the state Presented. Note that the annotation

determines that the article is in this state when the date of review is null and three reviewers have
not yet been assigned. The date of review corresponds to the DateOfReview field, which can be

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



402 M. POLO, I. GARCÍA-RODRÍGUEZ AND M. PIATTINI

Figure 14. State metamodel.

Figure 15. Desired behaviour for Article instances.

read using the getDateOfReview method (one of the default methods assigned by the tool); the
second part of the condition (getNumberOfReviewers (bd)<3) requires a new method to be added
to the class. Note that a parameter (bd) has been added to the signature of this operation. Since the
generated application must access the database to know the actual number of reviewers assigned,
this operation must receive a Broker parameter for connecting.
Required methods (getNumberOfReviewers, accept, etc.) can be added to the class at once using

the class viewer (Figure 17), although its actual implementation must be given by the software
engineer. The design of the final application imposes the use of the bd parameter, which is a Broker

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



AN MDA-BASED APPROACH FOR DATABASE RE-ENGINEERING 403

Figure 16. Restructuring panel with the class viewer in the foreground.

used by all methods accessing the database. The Broker is an implementation of the Proxy pattern
[32] specialized as a Database Broker [34] representing the main access point to the database. The
Broker class is generated for the four final platforms considered (desktop Java, Java JSP, EJB andC#
applications). Thus, the state description shown in the previous figure (getDateOfReview()==null
&& getNumberOfReviewers(bd)<3) would be valid for any of them.
Exit transitions correspond to methods that can be executed on the class being described. The

transition will be triggered if the instance is in a compatible state and if the possible precondition
is verified. The triggering of a transition may imply the execution of one or more actions and,
depending on post-evaluated conditions, a state change. The left side of Figure 18 shows an exit
transition going from UnderRevision to Reviewed and is triggered when the review method is
executed. Reviewed is reached if this is the third revision of the article. As a consequence of its
execution, the system will report completion of the article revisions to the editor journal.
Since each state is described with a Boolean expression, the lack of preconditions does not

invalidate the transition (the self-description of the state is actually a precondition).

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



404 M. POLO, I. GARCÍA-RODRÍGUEZ AND M. PIATTINI

Figure 17. Addition of methods.

Figure 18. Description of exit transitions.

To generate the code, the tool adds a method for each method description given in the class
viewer. In Figure 17, the operation int getNumberOfReviewers(Broker bd) is being described and
translated into the first method shown on the right side of Figure 19.
For each state defined for a class, the tool generates a method to check whether the instance is

in that state. The second method listed in the right-hand column in Figure 19 determines whether
the instance state is UnderRevision. The method body is made up of the return keyword followed
by the description given to the state in Figure 17:
return (getNumberOfReviewers<2).
Triggering events are also added as methods: according to the state machine shown in Figure 15,

the review method can be triggered from the UnderRevision state, although the target state de-
pends on two preconditions. On the left side of Figure 19, the code generated for the review method
(whose two possibilities of execution were described in Figure 18) is shown. The given implementa-
tion checks, the first time, whether the instance is in an appropriate state (stateIs UNDERREVISION)

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



AN MDA-BASED APPROACH FOR DATABASE RE-ENGINEERING 405

Figure 19. Some of the methods generated.

and, the second time, the precondition (getNumberOfRevisions(bd)==2 or getNumberOfRevisions
(bd)<2).

3.5. Code generation

The previous sections have explained some concepts of the strategy for code generation, but focused
on the domain layer of the final application. This section describes the policies followed to give
the final application a suitable architectural design.
The tool builds a multilayer application from the instance of OOS annotated with state machines.

The four main layers are domain, controllers, presentation and pure fabrications. The code gener-
ation step considers both classes and the relationships between classes. Thus, for each class K in
OOS:

(1) A class K is added to the domain layer. K will have the default operations and those that
have been added by the user in the state machine definition (restructuring) of K .

(2) A class FK is added to the presentation layer (F comes from ‘form’ or ‘frame’). FK will
have the adequate widgets (textbox, checkboxes, etc.) to manipulate instances of K , as well
as the suitable buttons to execute the default operations on K . Moreover, if K has states,
there will also be buttons that make it possible to execute operations depending on the state
of K . For example, if an article is in the UnderRevision state, then its corresponding window
will show a button to execute the review operation.

(3) A class ListK is added to the presentation layer, which will show listings of records of K .
Selecting one record, the application will show the instance of K in the corresponding FK
window.

(4) Depending on the final platform, a class CK that plays the role of a ‘use case controller’
[41] is added to the controller layer. If the application is JSP or EJB (where the presentation
layer is composed of web pages), messages passed from FK (a web page) will be captured
by CK, which translates them into calls to methods of the associated instance of K .

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



406 M. POLO, I. GARCÍA-RODRÍGUEZ AND M. PIATTINI

(5) A KPF class is added to the pure fabrication tier. The pure fabrication pattern [23] advises
delegating those operations that are not part of the business goal of the class to associated
classes. Thus, if domain.K has the business methods, methods in KPF are in charge of
allowing navigation among records of related tables (in other words, instances of related
classes), obtaining listings in HTML, etc.

(6) Moreover, for each operation Oin K described in the class viewer (Figure 17), the tool
adds an FO class and sends (to the corresponding controller class, CK) the adequate instruc-
tions to deal with these messages. FO includes suitable widgets to send parameters to the
corresponding operation.

Figure 20 illustrates some of the classes generated for the Article class after having reverse
engineered the JSP application: formArticle is the corresponding FK class (a web page); the
remaining classes starting with form correspond to some of the FO web pages generated to execute
some of the operations defined for K . gestArticle represents the CK class (controller), which
will receive parameters and message calls from the presentation layer and will pass them to the
associated domain instance (Article). listArticle corresponds to the aforementioned ListK class that,
for example, obtains HTML listings from the pure fabrication.
The background of Figure 21 shows the web page generated for the review operation in Article. In

Figure 17, the review operation had three String parameters (recommendation, commentsToAuthors
and commentsToEditor). The corresponding class in the presentation layer shows the complete
record and includes three widgets to give values to the three parameters (in this example, and due
to the lengths of these fields in the database, the tool has added three ‘text areas’ that have been
manually changed by three text fields to reduce the size of the figure) and a button to send the review
message instance. The figure also shows the possibility of selecting values from related classes: if
the user presses the button highlighted in the background, the list of possible values is extracted
by the pure fabrication and is shown on a new page. Then, any value (‘Accepted’ or ‘Accepted

Figure 20. A view of the final application class diagram.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



AN MDA-BASED APPROACH FOR DATABASE RE-ENGINEERING 407

Figure 21. The FK class corresponding to the review operation in Article.

with minor revisions’, for example) can be selected in the foreground and transported to the State
widget.
Relationships in the OOS instance are used to add methods to the pure fabrication classes cor-

responding to the related classes. For example, the listing shown in the foreground window of
the previous figure is obtained by the selectArticleStateForArticle static method, which has been
automatically added to FPArticle by means of the relationship between Article and ArticleState,
which in turn proceeds from the foreign key relationship existing between the corresponding two
tables.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



408 M. POLO, I. GARCÍA-RODRÍGUEZ AND M. PIATTINI

Figure 22. Scripts are added to validate parameters.

Additionally, the tool adds a set of fixed classes in charge of managing security, roles, users, etc.
to the final application. In both standard JSP and EJB applications, for example, a set of web pages
and servlets is added to the presentation layer to make it possible to create users, grant assignments,
etc., always preserving the separation of business logic (the security logic, in this case) from its
view. Also, if the original database had stored procedures, a specific window (or JSP page) is
added for each one, containing the suitable widgets to assign values to the parameters. For web
applications, the tool also adds a small Javascript program to each class with a set of functions to
validate the values of the parameters before sending them to the server (Figure 22).
The code generation process may include the generation of the SQL code to migrate the original

database to another manager (from Access to SQL Server, for example). The main difficulties in
this step concern the conversion of data types, since each manager has a different set of data types
(i.e., Access and Caché have the boolean, which is a bit both in SQL Server and in Oracle). The
conversion is guided by a suite of configuration tables.
The persistence tier only has a class (the Database Broker) that centralizes access to the database

from the domain tier. Persistence services are requested by the user, passing from the Presentation
tier to the Broker through domain and pure fabrication classes.

3.6. Platform-specific metamodels

OOS (Figure 10) encapsulates the structures required to support class diagrams representing con-
ceptual schemes for databases. However, each final platform has some particularities that make it
advisable to use specific metamodels for each platform.
Thus, for example, the tool is capable of generating EJB 2.0 applications. In this case, an entity

EJB is added to the domain tier. However, in order to make the bean findable and accessible for
remote clients, the addition of a ‘home’ interface is required; in the same manner, a ‘remote’
interface is needed to call the business methods. Thus, the EJBs metamodel includes the presence
of the ‘interface’, a new element that we did not consider in the description of OOS. C#, in addition
to having fields and methods, also contains ‘properties’, a special type of operation that does not
take parameters or have parentheses.
These metamodels, which are adapted to the target platform, correspond to the MDA’s platform-

specific metamodels.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



AN MDA-BASED APPROACH FOR DATABASE RE-ENGINEERING 409

3.7. Customizing code generation

The code generated can be customized by adding new templates. Thus, for example, it is easy
to connect the domain with the presentation layer through an intermediate layer of observers, by
applying the MVC pattern: when any user changes the state of any instance, this transmits its new
state to all the screens that are observing it. Figure 23 shows a class diagram where each domain
class (Article, Journal) is associated with a collection of observers (defined as interfaces), which
are implemented by the corresponding classes in the presentation layer.
If the complete application must be generated following this pattern, the template files cor-

responding to the presentation and domain classes should be modified adding the following: in
presentation, the template will include an implements instruction to denote the implementation of
the interface; the instructions to be altered in the domain template are highlighted in Figure 24;
in Relational Web, patterns are written between the # symbol. Each time the tool finds a pattern,
it substitutes it with the corresponding text. For example, the pattern #CLASS# is substituted by
the class name (Article, Journal, Person. . . ); thus, according to Figure 24, an import statement will
be added to each domain class to import its corresponding observer, which will be placed into
the observers package. The #COLLECTION COMMENT# pattern is substituted by a comment
(doclet) that is redacted according to the target IDE (JDeveloper or Eclipse), which will correctly
draw the 1:n association.

Figure 23. Addition of an observers layer.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



410 M. POLO, I. GARCÍA-RODRÍGUEZ AND M. PIATTINI

Figure 24. Modifications to the domain class template.

Figure 25. Original (left) and final structures of folders.

The template for the observer interface, which is not in the default set of templates for Relational
Web, must be placed in a directory under the templates folder and must have ‘template’ as extension.
The tool processes these files and substitutes the corresponding patterns. The left-hand side of Figure
25 shows the structure of the templates folder and the contents of the generic template added for
building observers; the right-hand side shows the folders making up the structure of the generated
application, the set of observers generated and a sample of the code obtained for one of them.

4. THE RE-ENGINEERING PROCESS AS AN MDA PROCESS

Section 2.3 reviewed some key concepts of MDA and summarized two common approaches for
model transformation (rewriting rules based, andmarks and templates based). The section concluded

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



AN MDA-BASED APPROACH FOR DATABASE RE-ENGINEERING 411

by affirming that the technique and tool proposed in this article is an intermediate proposals between
both approaches.
Both the tool and the re-engineering process fulfill the basic ideas of MDA:

(1) Both the database and the OOSmetamodels represent relational databases and class diagrams
in a vendor-independent way. With these metamodels, one can represent the relevant char-
acteristics (from the point of view of the described re-engineering process) of any relational
database or class diagram. These metamodels then match with the computation-independent
viewpoint.

(2) The instances of database and OOS represent actual databases and class diagrams. Indeed,
all the factories appearing in Figure 7 translate their respective physical databases to our
specific metamodel; later, the code is not generated from the OOS instance but translated
into a platform-specific metamodel (Section 3.6). Thus, Database and OOS match with the
Platform-independent viewpoints.

(3) Finally, the resulting database and the multilayer web application are completely platform
dependent. For example, the SQL instructions required to build the new version of the
database are quite similar, but they have small differences between one RDBMS and another.
Also the JSP pages, classes, etc. are different when the application is based on standard Java
classes or Enterprise Java Beans. Code generation is based on template files and patterns,
concepts that correspond to the MDA ideas of templates and marks. For example, marks are
used to specify the elements of the model for both relational and object-oriented systems
by means of metamodels (as the definition of ‘mark’ explains [26]). Templates are used to
specify how the elements (belonging to one metamodel) are transformed into elements of
another model (belonging to another metamodel). Thus, templates contribute to specifying
the transformations between instances of different metamodels.

5. CASE STUDIES

Relational Web has been successfully used by the authors in at least 12 projects and has been
given to several software development companies for their own developments. Below we give brief
descriptions of some of these projects, which are summarized in Table IV.
Alar.Net is the intranet of the Alarcos Research Group, where the authors of this article are

undertaking their current research, and is one of the first projects developed with the tool. It is
accessible to members from the web page of the group (http://alarcos.inf-cr.uclm.es). The intranet
started from a relational database (Figure 26) which holds all the tables storing the information
concerning the research group (members, publications, projects granted, theses, trips, participation
in committees, etc.). According to the discussion of previous sections, Relational Web generates a
complete multi-tier application (Figure 27). This one has a wide set of characteristics to manage
all the information saved in the database. However, the users expected other functionalities, such
as the generation of curricula vitarum for the members and the group in several formats (pdf, doc),
sharing of the information to be published in the public site, granted projects summaries, etc. Also,
the default user identification system provided by Relational Web required to be changed in order
to use the Active Directory of the University. For this case study, the code generated by Relational
Web is ready to be quickly modified to fulfill these requirements: actually, it is quite easy to add
new functionalities, being less than 1.5 h the time spent in perfective maintenance tasks.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



412 M. POLO, I. GARCÍA-RODRÍGUEZ AND M. PIATTINI

Table IV. Some of the projects developed with Relational Web.

Database # of Additional
Project Type manager tables Platform functionalities

Alar.NET (alarcos.
inf-cr.uclm.es)

Internal MS Access 65 JSP Users’ identification with POP3
server

Generates personal, group and
project curricula in several
official formats

Discussion forums

Escuela Superior
de Informática
(www.inf-cr.uclm.es)

Mixed Oracle, later
migrated to
SQL Server

133 JSP Users’ identification with POP3
server

(supervised
students)

Standard
Java

Feeds the institution’s public
web page

Generates .doc file with the
Student Guide
Broadcasts news

Printing house External SQL Server 107 JSP

C# Control of productive process

Control of times

Sports club External MySQL 32 JSP Small adaptations

Figure 26. A small subset of tables and relationships.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



AN MDA-BASED APPROACH FOR DATABASE RE-ENGINEERING 413

Figure 27. (a) Alar.Net welcome screen and (b) main screen.

The School of Computer Science of the University of Castilla-LaMancha has a set of dynamic web
pages (http://www.inf-cr.uclm.es) whose information is extracted from an SQL Server database.
(Oracle was initially used, but it was migrated due to several requests from programmers, who find
it more comfortable to work with SQL Server.) These are maintained via an intranet built with
Relational Web. The database has 133 tables and saves information about the school staff (personal
information, and also departments, jobs, etc.), subjects of study, course scheduling, research groups,
activities, scholarships, news, theses, etc. The intranet is used by all people working at the school and
thus has almost 200 users. The identification procedure has also been adapted to use the university’s
Active Directory. One of the main uses of the system is the maintenance of the academic information
of the subjects. Related to this feature, the system maintains a log with historical information.
Thus, the tool is capable of generating the Student Guide in several formats and corresponding to
different years. It also contains a module that sends news inserted by the intranet users by e-mail
to subscribers. This module has been improved to send notifications to mobile phones as well.
The person responsible for this project was, from 2001 to 2004, one of the authors of this article,
despite now being a professor outside this research group. Each semester, the school offers two
scholarships to collaborate in maintaining the web application, which are assigned to undergraduate
students. They perform all types of maintenance tasks, such as improving the Web page, adding
new functionalities to the intranet, data maintenance, user support, etc. The project has a high
turnover rate of students, but the uniform and high-quality structure of the code generated requires
little apprenticeship. Because of this, the time spent in comprehending the architecture of the final
application, the code style, etc., is very short.
One of the first projects developed by an external organization manages the productive process

of a printing house. Here, the generated code was modified to calculate the machines that each
submission had to pass through. This application works with an SQL Server database containing
107 tables. Initially, the system was generated as a web application, although it was expanded with
an additional C# program with a small set of tables to control the time that the staff dedicates to
tasks, also making it possible to control the time consumed by each job.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



414 M. POLO, I. GARCÍA-RODRÍGUEZ AND M. PIATTINI

Very recently, Relational Web was used to build an application for managing a sports club.
The application allows members to reserve courts, to know the state of their accounts, etc., and
has additional administrative functionalities for the club staff. The application was generated from
an SQL Server database, although the developers decided to migrate it to MySQL, which meant
performing some very small changes in the generated source code.
It is important to note that, in all projects (both internally and externally developed), the mean

time to perform either a corrective or a perfective maintenance task was less than 1.5 h. When the
programmer knows how Relational Web structures the final application, he or she quickly detects
where the changes to the code must be implemented. This good coding and architectural style
also helps to preserve the high quality of the modifications. This opinion is shared by external
developers, who have made interesting suggestions to the functionalities that can be added to the
generated code. For example, the possibility of customizing the code generation process (Section
3.7) with the arbitrary inclusion of new templates was proposed by the developers of the sports
club application.
Therefore, the technical scenarios where Relational Web can be used include all those related to

the development of database-intensive applications. On the basis of the relational schema and the
annotations made to the class model using state machines, the tool generates a ready-to-deploy ap-
plication. The architecture of the application is organized according to the well-known architectural
and design patterns. This fact leads to high understandability and maintainability of the code gen-
erated. Thus, even though the generated application does not fulfill all the expected requirements,
these can be achieved and implemented in very short times. Today, the tool is not applicable to
non-relational databases or to relational databases with a poor design. (For example, if the database
has no foreign keys, Relational Web will not be capable of detecting relationships among tables
and objects, thus limiting the functionalities of the generated application.)

6. CONCLUSIONS AND FUTURE WORK

This article has presented a complete re-engineering process that includes reverse engineering,
restructuring and forward engineering, as well as a supporting tool for the automated generation of
multilayer applications from relational databases.
On the basis of the architectural design and metamodels described here, the tool can generate

four different types of applications from four different types of database managers (Caché Inter-
systems, Microsoft Access, Oracle and SQL Server). Its design also facilitates both the addition
of new database managers to be used as input products and the implementation of new code
generators.
The code generation process is based on the use of well-known design and architectural patterns

(separation of layers, business operations in business classes, pure fabrication, database broker) that
provide the code in its final application with a uniform, high-quality structure where responsibilities
are adequately distributed in different classes and the architectural design is easily understandable.
This means little effort to understand the structure and behaviour of the final application, as well as
short maintenance intervention times, even when maintenance workers do not belong to the original
development team.
The tool has been used in the development of several projects. The mean resolution time for

corrective and perfective interventions is less than 1.5 h. Moreover, classical risks of software

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



AN MDA-BASED APPROACH FOR DATABASE RE-ENGINEERING 415

projects, such as the leaving of the expert domain staff is mitigated, due to the aforementioned
characteristics of the code generated: this means that the new staff can be promptly familiarized
with the ongoing projects.
As explained in Section 3, the core metamodel of Relational Web is based on object orientation.

However, according to the MDA paradigm, the obtained instance of the OOS metamodel (Figure
10) could be translated into any other kind of representation, such as a structured application in, for
example, C. Obviously, for this type of transformation, both the target metamodel and the suitable
transformation rules should be defined and implemented.
Currently, the most important efforts are devoted to the implementation of new functionalities for:

(1) generating .NET web applications that will share the domain tier with the existing C# generator;
(2) exporting class models and state machines in XMI to make manipulation with Eclipse possible;
and (3) importing Eclipse models to generate code.

ACKNOWLEDGEMENTS

This work has been possible, thanks to the Junta de Comunidades de Castilla-La Mancha (ENIGMAS project,
PBI-05-058), Ministerio de Industria, Turismo y Comercio (FAMOSO project, FIT-340000-2005-161) and
Ministerio de Educación y Ciencia (ESFINGE project, TIN2006-15175-C05-05).

The authors wish to thank the anonymous referees, who have made very important contributions to improve
the work during the revision process.

REFERENCES

1. Chikofsky EJ, Cross JH. Reverse engineering and design recovery: A taxonomy. IEEE Software 1990; 7(1):13–17.
2. Chan K, Liang Z, Michail A. Design recovery of interactive graphical applications. International Conference on Software

Engineering. IEEE Computer Society: Silver Spring MD, 2003; 114–125.
3. Tonella P, Potrich A. Static and dynamic C + + code for the recovery of the object diagram. International Conference

on Software Maintenance (ICSM’02). IEEE Computer Society: Silver Spring MD, 2002; 54–65.
4. Borne I, Romanczuk A. Towards a systematic object-oriented transformation of a merise analysis. Second Euromicro

Conference on Software Maintenance and Reengineering 1998; 213–225.
5. Alhajj R, Polat F. Reengineering relational databases to object-oriented: Constructing the class hierarchy and migrating

the data. Eighth Working Conference on Reverse Engineering (WCRE’01). IEEE Computer Society: Silver Spring MD,
2001; 335–344.

6. Andersson M. Extracting an entity relationship schema from a relational database through reverse engineering. Thirteenth
International Conference on Entity-relationalship Approach (Lecture Notes in Computer Science, vol. 881). Springer:
Berlin, 1994; 403–419.

7. Chiang R, Barron T, Storey VC. Reverse engineering of relational databases: Extracting of an EER model from a
relational database. Journal of Data and Knowledge Engineering 1994; 12(2):107–142.

8. Hainaut JL, Henrard J, Hick JM, Roland D, Englebert V. Database design recovery. Eighth Conferences on Advance
Information Systems Engineering. Springer: Berlin, 1996; 463–480.

9. Henrard J, Englebert V, Hick JM, Roland D, Hainaut JL. Program understanding in database reverse engineering.
Database and Expert Systems Applications (DEXA) 1998; 70–79.

10. Pedro de Jesus L, Sousa P. Selection of reverse engineering methods for relational databases. Third European Conference
on Software Maintenance. Nesi, Verhoef: Los Alamitos CA, 1998; 194–197.

11. Henrard J, Hick J-M, Thiran P, Hainaut J-L. Strategies for data reengineering. Ninth Working Conference on Reverse
Engineering. IEEE Computer Society: Richmond VA, 2002.

12. Blaha M. A retrospective on industrial database reverse engineering projects—Part 1. Proceedings 8th Working Conference
on Reverse Engineering (WCRE’01). IEEE Computer Society: Stuttgart, Germany, 2001; 136–147.

13. Blaha M. A retrospective on industrial database reverse engineering projects—Part 2. Proceedings 8th Working Conference
on Reverse Engineering (WCRE’01). IEEE Computer Society: Stuttgart, Germany, 2001; 147–156.

14. Leavit N. Whatever happened to object-oriented databases? IEEE Computer 2001; 33(8):16–19.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



416 M. POLO, I. GARCÍA-RODRÍGUEZ AND M. PIATTINI

15. Brown K, Whitenack BG. Crossing Chasms: A Pattern Language for Object-RDBMS Integration, 1995.
http://www.smalltalktraining.com/articles/staticpatterns.htm [15 August 2007].

16. Shoval P, Shreiber N. Database reverse engineering: From the Relational to the Binary Relationship model. Journal of
Data & Knowledge Engineering 1993; 10:293–315.

17. Castellanos M. A methodology for semantically enriching interoperable databases. Eleventh British National Conference
on Databases, 1993; 58–75.

18. Tari Z, Bukhres O, Stokes J. The reengineering of relational databases based on key and data correlations. Searching
for Semantics: Data Mining, Reverse Engineering, etc., Spaccapietra S, Maryanski FJ (eds.). Chapman and Hall, 1997.

19. Soon L-K, Ibrahim H, Mamat A. Constructing object-oriented classes from relations. International Symposium on
Information and Communication Technologies (M2USIC) 2005; 313–316.

20. Premerlani WJ, Blaha MR. An approach for reverse engineering of relational databases. Communications of the ACM
1994; 37(5):42–49.

21. Pérez J, Ramos I, Anaya V, Cubel J, Domı́nguez F, Boronat A, Carsı́ J. Data reverse engineering of legacy databases
to object oriented conceptual schemas. Electronic Notes in Theoretical Computer Science 2002; 74(4):1–13.

22. Yeh D, Li Y. Extracting entity relationship diagram from a table-based legacy database. Ninth European Conference on
Software Maintenance and Reengineering (CSMR’05). IEEE Computer Society: Silver Spring MD, 2005; 72–79.

23. Larman C. Applying UML and Patterns. Prentice-Hall: Upper Saddle River, NJ, 1998.
24. Keller W. Mapping objects to tables. A pattern language. European Pattern Languages of Programming Conference,

1997.
25. Polo M, Piattini M, Ruiz F. Reflective Persistence (Reflective CRUD: Reflective Create, Read, Update and Delete).

Sixth European Conference on Pattern Languages of Programs (EuroPLOP). Universitätsverlag Konstanz GmBH: Irsee,
Germany, 2001; 69–85.

26. OMG, MDA Guide Version 1.0.1. 2003.
27. Bézivin J. Model engineering for software modernization. Guest Talk in the 11th IEEE Working Conference of Reverse

Engineering, 2004.
28. Boronat A, Carsı́ JÁ, Ramos I. Automatic reengineering in MDA using rewriting logic as transformation engine. Ninth

European Conference on Software Maintenance and Reengineering (CSMR’05). IEEE Computer Society: Manchester,
U.K., 2005; 228–231.

29. McCombs T. Maude 2.0 Primer. Version 1.0. 2003. http://maude.cs.uiuc.edu/primer/maude-primer.pdf [15 September
2005].

30. Allilaire F, Idrissi T. ADT: Eclipse development tools for ATL. Second European Workshop on MDA, 2004; 9.
31. Bézivin J, Jouault F, Valduriez P. An Eclipse-based IDE for the ATL Model Transformation Language. University of

Nantes, Nantes, 2005.
32. Gamma E, Helm R, Johnson J, Vlissides J. Design Patterns. Elements of Reusable of Object-oriented Software. Addison-

Wesley: Reading MA, 1995.
33. Ambler SW. The Object Primer: Agile Model-driven Development with UML 2.0. Cambridge University Press: Cambridge,

2004.
34. Buschman F. A System of Patterns: Pattern-oriented Software Architecture. Addison-Wesley: Reading MA, 1996.
35. Calero C, Piattini M, Genero M. Empirical validation of referential integrity metrics. Information & Software Technology

2001; 43(15):949–957.

AUTHORS’ BIOGRAPHIES

Macario Polo has a PhD in Computer Science from the University of Castilla-La Mancha
and a MSc degree from the University of Seville. His research areas include automation
of software processes, especially testing and maintenance.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr



AN MDA-BASED APPROACH FOR DATABASE RE-ENGINEERING 417

Ignacio Garcı́a-Rodrı́guez has a PhD and a MSc degree in Computer Science from the
University of Castilla-La Mancha. His main research areas include migration of legacy
systems towards SOA architectures.

Mario Piattini is a full professor at the School of Computer Science in the University of
Castilla-La Mancha. He received his PhD and MSc degrees in Computer Science from the
Politechnical University of Madrid, as well as an MSc in Psychology from the National
University of Distance Education.

Copyright q 2007 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. 2007; 19:383–417
DOI: 10.1002/smr


